
Existence of a Market Equilibrium

Suppose there are ` goods and let P ⊆ R`
+ be the set of possible price-lists p.

Definition: A market excess demand function (or net demand function) is a function

Z : P→ R`.

Notation: Let S denote the unit simplex in R`, S = {p ∈ R`
+ |

∑`
1 pk = 1} .

We assume that a market excess demand function satisfies the following assumptions:

Assumptions:

(A1) S ⊆ P .

(A2) ∀p ∈ P : p · Z(p) = 0 . (Walras’ Law)

(A3) Z is continuous.

Note that if Z(·) is the sum of individual behavioral (demand/supply) functions Z i(·), then

A2 and A3 will be satisfied if they’re satisfied by each of the indidvidual functions. Note

too that if each individual function Z i(·) is homogeneous of degree zero, then
∑
Z i will be

as well, so that if we restrict ourselves to price-lists in the simplex S, we’ll effectively be

including all possible price-lists.

An equilibrium of a market demand function Z(·) is a price-list that clears all the markets,

as in the following definition.

Definition: An equilibrium of the market excess demand function Z is a price-list p for

which
Z(p) 5 0 and pk > 0⇒ Zk(p) = 0 (k = 1, . . . , `) .

The following remark says that if Z(·) satisfies Walras’ Law, then a p that satisfies the first

condition in the above definition must satisfy the second condition as well, so a price-list p

that satisfies Z(p) 5 0 is an equilibrium.

Remark: If Z(p) 5 0, and if Z satisfies Walras’ Law, then p is an equilibrium for Z(·).

Proof: If Zk(p) 5 0 for each k, then (since p ∈ R`
+) no term in the sum p · Z(p) can be

positive. According to Walras’ Law, the sum is always zero, so at this p each term must be

zero — i.e., the second condition in the definition of equilibrium must be satisfied. ‖

Here’s a clever proof, due to Arrow & Hahn, of the existence of a market equilibrium for the

case of just two goods:



Theorem: If Z : P→ R` satisfies (A1) - (A3), then Z has an equilibrium.

Proof for ` = 2 (Arrow & Hahn):

Define Z̃ : [0, 1] → R2 by Z̃(p1) = Z(p1, 1 − p1). The two component functions of Z̃ are

therefore Z̃1(p1) = Z1(p1, 1 − p1) and Z̃2(p1) = Z2(p1, 1 − p1). (See Figure 1.) Assumption

A1 ensures that Z̃ is well-defined on [0, 1]. According to the Remark above, if there is a price

p1 ∈ [0, 1] at which Z1(p1, 1−p1) 5 0 and Z2(p1, 1−p1) 5 0, then the price-list p = (p1, 1−p1)
is an equilibrium for Z, and we’ll say that p1 is an equilibrium of Z̃.

We first consider the two extreme points of [0, 1], namely p1 = 0 and p1 = 1. At p1 = 0,

Walras’ Law (A2) guarantees that 0Z̃1(0) + 1Z̃2(0) = 0, and thus that Z̃2(0) = 0. Therefore,

if Z̃1(0) 5 0, that’s enough to ensure that p1 = 0 is an equilibrium. The same argument

establishes that Z̃1(1) = 0, so that if Z̃2(1) 5 0, then p1 = 1 is an equilibrium. In either case,

the proof would be complete; therefore we assume that p1 6= 0 and p1 6= 1, which implies

that Z̃1(0) > 0 and Z̃2(1) > 0, and we’ll show that some p1 ∈ (0, 1) must be an equilibrium.

Since Z̃2(1) > 0 and Z̃2(·) is continuous, there is an interval (ξ, 1) ⊂ [0, 1] of p1-values

at which Z̃2(p1) > 0. For each such p1 ∈ (ξ, 1), Walras’s Law guarantees (since p1 > 0 and

1−p1 > 0) that Z̃1(p1) < 0. But we also have Z̃1(0) > 0 (because we’re assuming that p1 = 0

is not an equilibrium). Now we have Z̃1(0) > 0 and Z̃1(p1) < 0 for any p1 ∈ (ξ, 1), and Z̃1 is

defined and continuous for all p1 ∈ [0, p1]; therefore the Intermediate Value Theorem ensures

that there is a p̂1 ∈ [0, p1] at which Z̃1(p̂1) = 0. Using Walras’ Law again, and the fact that

p̂2 = 1− p̂1 > 0, we have Z̃2(p̂1) = 0. Therefore p̂1 is an equilibrium of Z̃, and (p̂1, 1− p̂1) is

an equilibrium of Z. ‖

The above proof depends on using Walras’ Law to reduce the problem to a single market,

applying the Intermediate Value Theorem to show that that market clears, and then us-

ing Walras’ Law again to establish that the (only) remaining market must clear as well.

With more than two goods, Walras’ Law doesn’t transform the problem to one where the

Intermediate Value Theorem applies.

With more than two goods, the mathematical tool we need is the Brouwer Fixed Point

Theorem:

Brouwer Fixed Point Theorem: If S is a nonempty, compact, convex set in R` and

f : S → S is a continuous function, then f has a fixed point — a point p ∈ S such that

f(p) = p.
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Equilibrium as a Fixed Point

If S is the set of states of a system, and f : S → S is a function that describes the transition

of the system from state to state — i.e., if st+1 = f(st) — then it’s clear that we ought to

simply define an equilibrium of the system as a fixed point of f . However, the equilibrium

concept we’ve been using for markets (a price-list at which the markets clear) was not derived

from such a transition function, so we don’t have a function f whose fixed points are the

equilibria of our system of markets. This is because we don’t know exactly how prices always

move over time — we don’t know the correct, true function f .

Nevertheless, our definition of equilibrium was motivated by an informal and incomplete

notion of how prices move: viz., if any of the goods are in excess demand or supply, we

expect that one or more of their prices will rise or fall. In other words, if there are any

markets that aren’t cleared by the current prices, then we assume those prices will change

— they’re not equilibrium prices. And conversely, we assume that if the current prices do

clear all the markets, then the prices will not change. Thus, while we don’t know the precise

transition function (or “laws of motion”) of the actual market system, we make some weak

assumptions about the properties of the transition function, and we (implicitly) use these

assumptions to define equilibrium.

Now, with our definition of equilibrium in hand, we can work backwards to make up a

transition function for which a fixed point is a state that satisfies our definition of equilibrium

— i.e., we have to make up a transition function with the property that the price-list changes

if and only if there are some markets that don’t clear at the current price-list. Then the

equilibria are automatically the fixed points of our transition function. And in order to

establish that an equilibrium exists, we have to establish that our transition function has a

fixed point. Therefore we need to have one or more theorems that guarantee a function will

have a fixed point, and we have to make sure the transition function we make up actually

satisfies the assumptions of one of these theorems. In the case of Brouwer’s Theorem, we

need to make sure that the state space S is nonempty, compact, and convex, and make sure

that the transition function we make up is continuous. Alternatively, in some situations we

might be able to make up a transition function that’s contraction, and then use the Banach

Contraction Mapping Theorem. For market equilibrium, it’s the Brouwer Theorem that does

what we need. (It’s also worth pointing out that a transition function whose fixed points are

equilibria is often extremely useful for computing an equilibrium in particular applications of

equilibrium analysis. Note how this is suggested by Figure 2, below: imagine iterating the

function f from any starting price-list p.)
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Gale-Nikaido Existence Proof

Theorem: If Z : P→ R` satisfies (A1) - (A3), then Z has an equilibrium.

Proof:

For each k = 1, . . . , ` define Mk : R→ R by Mk(p) = max{0,Zk(p)}. Define a “transition

function” f : S → S by

f(p) =
1∑`

1[pk +Mk(p)]
[p +M(p)] , ∀p ∈ S. (See Figure 2)

We first show that f has a fixed point, by establishing that

f indeed maps S into S and f is continuous,

and then applying Brouwer’s Fixed Point Theorem. Then we will show that any fixed point

of f is an equilibrium of Z.

To see that f maps S into S, note that for each p ∈ S and for each k we have Mk(p) = 0, and

therefore pk +Mk(p) = 0. Since pk > 0 for some k, we have pk +Mk(p) > 0 for that k, and

therefore
∑`

1[pk +Mk(p)] > 0, which ensures that f(p) is well-defined. We need to also verify

that the sum of the components of f(p) satisfies
∑`

1 fk(p) = 1, which is clearly true, as the

denominator in the definition of f(p) is the sum of the components of p+M(p). Therefore

we’ve established that ∀p ∈ S : f(p) ∈ S. To see that f is continuous, note that each Mk(·)
is continuous, so f is a sum and quotient of continuous functions (with denominator strictly

positive for all p). Since the function f : S → S is continuous, and S is nonempty, compact,

and convex, Brouwer’s Theorem guarantees that f has at least one fixed point.

Now suppose that p is a fixed point of f — i.e., f(p) = p, or equivalently,

p +M(p) =
∑̀
k=1

[pk +Mk(p)] p .

Then

p · Z(p) +M(p) · Z(p) =
∑̀
k=1

[pk +Mk(p)] p · Z(p) .

Walras’ Law yields p · Z(p) = 0, and therefore M(p) · Z(p) = 0 — i.e.,

M1(p)Z1(p) + · · ·+M`(p)Z`(p) = 0 .

According to the definition of the functions Mk(·), we have each Mk(p) = 0, and if Zk(p) < 0

then Mk(p) = 0. Therefore each term in the above sum is nonnegative, and since the sum

is zero, each term must be zero. Therefore we can’t have Zk(p) > 0 for any k, because that

would yield Mk(p)Zk(p) > 0. Therefore Zk(p) 5 0 for each k, thereby establishing that p is

an equilibrium of Z. ‖
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There’s nothing special about the particular price-adjustment functions Mk(·) we used in

the proof. Any (continuous!) functions that increase pk when good k is in excess demand

and (weakly) decrease pk when good k is in excess supply, and that are zero (i.e., pk doesn’t

change) when there is no excess demand or supply of good k, will work the same way in

the proof. In particular, if we let λ ∈ R++ we could have each Mk(p) = max{0, λZk(p)};
this will be useful later for obtaining convergence when we use this Gale-Nikaido transition

function f to compute market equilibria.

It’s also very important to remember that we’re not making any assumption about what the

“transition function” really is — i.e., about how prices really move over time. We’re merely

making up a transition function f for which (a) f will have a fixed point, and (b) any fixed

point of f will be an equilibrium.

Note that all three assumptions A1, A2, and A3 were used in the proof. A1 was used to

ensure that f maps S into S, which might not be true if we replace S with a proper subset

of S. A2 was used to establish that a fixed point of f is an equilibrium. And A3 was used

to establish that f is continuous.

Some Issues

(1) If any individual’s behavioral function is not single-valued — for example, if some con-

sumer’s indifference surfaces have flat segments or are not convex, or some firm has constant

returns to scale — then the function Z(·) also won’t be single-valued. We’ll have to alter our

approach by using correspondences.

(2) If any consumer has strictly increasing preferences, then Z(p) won’t be defined for some

of the price-lists p ∈ S — those in which some prices are zero. We’ll circumvent this problem

by working with the disaggregated definition of Walrasian equilibrium, in which it’s not

assumed that the individuals necessarily have well-defined demands at each price-list.

A subsequent set of lecture notes addresses the existence-of-equilibrium question using cor-

respondences and the disaggregated definition of Walrasian equilibrium. The disaggregated

definition is the one we’ve used before, to study the relation of Walrasian equilibrium to the

Pareto allocations and the core.
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Figure 1

Figure 2
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